# IR modifications of gravity and massive gravity theories

Shahab Shahidi

Damghan University

April 13, 2015

## Table of contents

- Intro to gravitational force.
- Problems of GR and their solutions.
- UV modifications to GR.
- IR modifications to GR.
- DGP model a higher dimensional solution.
- Fierz-Pauli model.
- Covariant FP model and dRGT massive gravity.

#### Introduction

- The gravitational force is an inverse square law/infinite range force.
- This means that the gravitational force carrier is massless!
- We call this carrier "graviton".
- Our experiments show that the gravitational force is always attractive!
- So, the graviton must be a spin-2 field. (Weinberg)
- Einstein, identified this spin-2 filed with the metric of a curved space-time.

## Introduction

- A massless spin-2 particle has 2 helicity states/ 2 d.o.f.
- Matter content of the universe will alter the geometry of space-time.

$$G_{\mu\nu} = 8\pi T_{\mu\nu}.$$

- The above equation is the Einstein's general relativity.
- What should we modify GR?
- GR can only explain the solar system physics correctly!
- This is somehow an intermediate scales, in the universe!



## **UV** modification

- For very small scales/UV limit, one should replace GR with a quantum theory of gravity!
- One needs a QFT of gravity/QFT for spin-2 field.
- The theory has many difficulties; can't be considered as a well-defined theory; non-renormalizability, definition of vacuum state,...
- Other attempts to build such a theory is
  - String theory; replacing point particles with strings... Green, Gross, Schwarz, Witten, Vafa, Garousi,...
  - 2 Loop quantum gravity; discarding the continuum of space-time at UV... Ashtekar, Rovelli, Tiemann,...
  - Ocal dynamical triangulations; triangulate the fabric of space-time! Loll, Ambjorn, Jurkiewicz,...

- At large scales/IR limit, deviations from GR is observed, such as the accelerated expansion of the Universe.
- Considering usual attractive gravitational force, the expansion of the universe should be decelerating!
- The accelerated expansion is related to something like a repulsive gravitational force!!
- This accounts to modify GR at IR; the IR modification of GR.

- Cosmologists add some dark energy to the universe, to explain this expansion! Dark energy has negative pressure!
- This can be achieved by adding a constant to Einstein's GR!

$$G_{\mu\nu} + \Lambda g_{\mu\nu} = 8\pi T_{\mu\nu}.$$

- $\Lambda$  is the cosmological constant!.
- One can go further and replace this constant by a scalar field, the so-called quintessense, or after using in inflation, the inflaton.

- Theoretical physicists, try to modify the geometry of space-time to obtain an accelerated expanding universe.
- Changing the Einstein general relativity results in the modified gravity theories!

$$S = \int d^4x \sqrt{-g}R.$$

- A bunch of modified theories of gravity exists!!
  - Going to higher dimensions.
  - 2 Adding higher derivative self-interactions term.
  - Secondary of Space-time Weyl, Cartan,...
  - Changing the force carrier!
  - etc.



# Massive gravity

- Instead of producing repulsive gravitational force, one can weaken the strength of attractive gravity.
- Giving mass to graviton, will help us!
- A massive force carrier has a Yukawa type potential

$$V(r) \propto \frac{e^{-mr}}{r}$$
.

- So, in principle, massive graviton can explain the accelerated expansion of the universe.
- Up to boundary of the universe, about

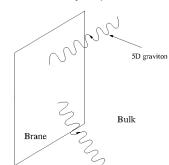
$$r \sim H_0^{-1} \sim 1.5 \times 10^{10} \ {\rm lyr} \sim 1.4 \times 10^{26} \ m$$

graviton should be massless!



• The potential should deviate from  $\frac{1}{r}$  law only at the boundary of the universe, giving the graviton mass

$$m_g \sim 10^{-33} \ eV$$
 or  $m_g \sim 2 \times 10^{-39} m_e$ 


- Graviton mass is very very small! But produce very large modification!
- Change d.o.f of the theory from 2 to 5.
- The resulting theory is called Massive Gravity.
- Two major categories of MG exist
  - Soft massive gravities; Write a theory which effectively produce massive graviton; DGP theory, Cascading gravities,...
  - Write a theory directly for a massive spin-2 field; Fierz-Pauli type theories, dRGT theory,...



# DGP model

# An example of soft theory

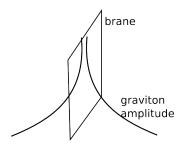
- One can think that our 4 dimensional universe, called the brane, lives in a 5 dimensional space-time called, the bulk.
- All standard model forces (electromagnetism, weak and strong nuclear forces) live in 4 dimensions. All daily experiments will be satisfied!



## DGP model

- Gravity can propagate to fifth dimension! So, graviton is a 5 dimensional object!
- A massless graviton in 5D has 5 d.o.f.
- So, the effective 4 dimensional graviton should be massive.
- Consider the action of the form

$$S = M_{\star}^{3} \int d^{4}x dy \sqrt{-5g} \, {}^{5}R + M_{p}^{2} \int d^{4}x \sqrt{-4g} \, {}^{4}R + \int d^{4}x \sqrt{-4g} \mathcal{L}_{m}.$$


• The form of propagator in momentum space is

$$\tilde{G}(p,y) = \frac{1}{2M_{\star}^3 p + M_p^2 p^2} e^{-p|y|}.$$



## DGP model

- ullet There exists a cross-over scale  $r_c=rac{M_p^2}{M_\star^3}.$
- For  $r \ll r_c$  graviton is 4 dimensional.
- For  $r \gg r_c$  graviton is 5 dimenstional. In 4D viewpoint the graviton at large scales is massive.



- DGP model can explain the hierarchy problem.
- Healthy models exist only in the flat background!



## Fierz-Pauli action

The FP action

$$S = \int d^4x \left( -\frac{1}{2} \partial_{\lambda} h_{\mu\nu} \partial^{\lambda} h^{\mu\nu} + \partial_{\mu} h_{\nu\lambda} \partial^{\nu} h^{\mu\lambda} - \partial_{\mu} h^{\mu\nu} \partial_{\nu} h + \frac{1}{2} \partial_{\lambda} h \partial^{\lambda} h - \frac{1}{2} m^2 (h_{\mu\nu} h^{\mu\nu} - h^2) \right).$$

- FP mass term is the unique ghost and tachyon free mass term for a spin-2 field. (Fierz and Pauli 1939)
- There is no general covariance (preferred background).

## Fierz-Pauli action

• The m=0 case is invariant under the linearized general coordinate transformations

$$\delta h_{\mu\nu} = \partial_{\mu}\xi_{\nu} + \partial_{\nu}\xi_{\mu}.$$

hence, 2 d.o.f.

- The massive case breaks the above symmetry, and so acquire 3 more d.o.f.
- ullet -1 in the mass term is necessary for the absence of ghost.
- Term like  $-\frac{1}{2}m^2(h_{\mu\nu}h^{\mu\nu}-(1-a)h^2)$  with  $a\neq 0$  will describe a scalar ghost with mass  $m_g^2=\frac{3-4a}{2a}m^2$ .
- For small a, the ghost mass squared behaves like  $\frac{1}{a}$ . Becomes infinite in the limit  $a \to 0$ . A non-dynamical ghost!



# The vDVZ problem

 The massless graviton propagator in the momentum space is (after fixing the gauge redundancies)

$$\mathcal{D}_{\alpha\beta,\sigma\lambda} = \frac{-i}{p^2} \left[ \frac{1}{2} \left( \eta_{\alpha\sigma} \eta_{\beta\lambda} + \eta_{\alpha\lambda} \eta_{\beta\sigma} \right) - \frac{1}{2} \eta_{\alpha\beta} \eta_{\sigma\lambda} \right],$$

- This is the standard inverse square law of the gravitational filed.
- The massive propagator on the other hand

$$\mathcal{D}_{\alpha\beta,\sigma\lambda} = \frac{-i}{p^2 + m^2} \left[ \frac{1}{2} \left( P_{\alpha\sigma} P_{\beta\lambda} + P_{\alpha\lambda} P_{\beta\sigma} \right) - \frac{1}{3} P_{\alpha\beta} P_{\sigma\lambda} \right],$$

with

$$P_{\alpha\beta} \equiv \eta_{\alpha\beta} + \frac{p_{\alpha}p_{\beta}}{m^2}.$$



# The vDVZ problem

- Ignoring the ill behavior of  $P_{\alpha\beta}$  in the limit  $m \to 0$ , there is a more serious problem in the above propagators.
- There is a difference in coefficient for the last term, even as  $m \to 0$ .
- It is 1/2 vs. 1/3.
- This is the first appearance of the vDVZ discontinuity.
- One can cure the above illness with a brilliant trick a la Stuckelberg.

# Non-linear massive gravity

- This discontinuity can be cured by non-linear interactions!
   (Vainshtein 1972)
- The simplest non-linear massive gravity action is

$$S = \frac{1}{2\kappa^2} \int d^4x \left[ (\sqrt{-g}R) - \sqrt{-g^0} \frac{1}{4} m^2 g^{(0)\mu\alpha} g^{(0)\nu\beta} \left( h_{\mu\nu} h_{\alpha\beta} - h_{\mu\alpha} h_{\nu\beta} \right) \right].$$

- There is no general covariance in the theory.
- These non-linear terms give rise to a ghost in massive gravity! (Boulware and Deser 1972)
- So the problem is how one can construct a general covariant mass term for the spin-2 particle  $g_{\mu\nu}$ ?

# dRGT massive gravity

• One of the general covariant versions of Fierz-Pauli action is

$$S = -M_p^2 \int d^4x \sqrt{-g} R(g)$$
$$+ 2M_p^2 m^2 \int d^4x \sqrt{-g} \left( e_2(\mathcal{K}) + \alpha_3 e_3(\mathcal{K}) + \alpha_4 e_4(\mathcal{K}) \right).$$

where

$$\begin{split} e_2(\mathcal{K}) &= [\mathcal{K}]^2 - [\mathcal{K}^2] \,, \\ e_3(\mathcal{K}) &= [\mathcal{K}]^3 - 3[\mathcal{K}][\mathcal{K}^2] + 2[\mathcal{K}^3] \,, \\ e_4(\mathcal{K}) &= [\mathcal{K}]^4 - 6[\mathcal{K}^2][\mathcal{K}]^2 + 8[\mathcal{K}^3][\mathcal{K}] + 3[\mathcal{K}^2]^2 - 6[\mathcal{K}^4] \,, \end{split}$$

and

$$\mathcal{K}^{\mu}_{\nu}(g,\phi^a) = \delta^{\mu}_{\nu} - \sqrt{g^{\mu\alpha}f_{\alpha\nu}}$$

→□ ト ← 差 ト ← 差 ト ・ 差 ・ 夕 Q (\*)

# dRGT massive gravity

Equation of motion

$$G_{\mu\nu} + m^2 \underline{X}_{\mu\nu} = \kappa T_{\mu\nu} \,,$$

with

$$\frac{\mathbf{X}_{\mu\nu}}{\mathbf{X}_{\mu\nu}} = -\frac{1}{2} \left[ \mathcal{K} g_{\mu\nu} - \mathcal{K}_{\mu\nu} + \alpha \left( \mathcal{K}_{\mu\nu}^2 - \mathcal{K} \mathcal{K}_{\mu\nu} + \frac{1}{2} g_{\mu\nu} \left( [\mathcal{K}]^2 - [\mathcal{K}^2] \right) \right) + 6\beta \left( \mathcal{K}_{\mu\nu}^3 - \mathcal{K} \mathcal{K}_{\mu\nu}^2 + \frac{1}{2} \mathcal{K}_{\mu\nu} \left( [\mathcal{K}]^2 - [\mathcal{K}^2] \right) - \frac{1}{6} g_{\mu\nu} \left( [\mathcal{K}]^3 - 3[\mathcal{K}][\mathcal{K}^2] + 2[\mathcal{K}^3] \right) \right].$$

where

$$\alpha_3 = (\alpha - 1)/3, \quad \alpha_4 = -\beta/2 + (\alpha + 1)/12.$$



# dRGT massive gravity

- There is no flat and closed FRW solution for the model! (D'Amico et al. 2011)
- But there is an open FRW solution (Mukohyama et al. 2011)

$$3H^{2} - \frac{3|K|}{a^{2}} = \rho_{m} + c_{\pm} m_{g}^{2},$$
$$-\frac{2\dot{H}}{N} - \frac{2|K|}{a^{2}} = \rho_{m} + p_{m},$$

where

$$c_{\pm} \equiv -\frac{1}{(\alpha_3 + \alpha_4)^2} \left[ 1 + \alpha_3 \pm \sqrt{1 + \alpha_3 + \alpha_3^2 - \alpha_4} \right] \times \left[ 1 + \alpha_3^2 - 2\alpha_4 \pm (1 + \alpha_3)\sqrt{1 + \alpha_3 + \alpha_3^2 - \alpha_4} \right].$$

## Some difficulties

- dRGT massive gravity suffers from the appearance of superluminal modes, in some specific cosmological solutions.
- ullet One can cure this problem by adding an extra scalar field  $\sigma$  with dilatation symmetry:

$$g_{\mu\nu} \to e^{-2\alpha} g_{\mu\nu}, \qquad \sigma \to \sigma - M_{Pl}\alpha.$$

- $\alpha$  is constant.
- The above symmetry is global.

#### **Theorem**

(Gruzinov) All massive gravity theories derived from Fierz-Pauli action suffers from ghost and/or superluminal instability.



# Thanks for your attention.



M. Fierz and W. Pauli, Proc. R. Soc. London A 173, 211 (1939).



A. I. Vainshtein, Phys. Lett. B 39, 393 (1972).



D. G. Boulware and S. Deser, Phys. Rev. D 6, 3368 (1972).



C. de Rham, G. Gabadadze and A. J. Tolley, Phys. Rev. Lett. 106 (2011) 231101, arXiv:1011.1232 [hep-th],



A. Gumrukcuoglu, C. Lin and S. Mukohyama, JCAP 11 (2011) 030, arXiv:1109.3845v1 [hep-th].



N. Khosravi, N. Rahmanpour, H. R. Sepangi and S. Shahidi, Phys. Rev. D 85, 024049 (2012).



N. Khosravi, H. R. Sepangi, S. Shahidi, Phys. Rev. D 86 (2012) 043517



Z. Haghani, H. R. Sepangi, S. Shahidi, Phys. Rev. D 87 (2013) 124014.