Dark Energy OR Baryonic Matter?

Zahra Haghani

Damghan University

April 20, 2015

- 1 History
- 2 Modified Gravity Theories
 - Lovelock Lagrangian
 - Brans-Dicke Theory
 - Higher derivative gravity
- 3 Non-minimal coupling
- 4 The model and its consequences
 - The action
 - Field equations
 - Massive test particle
 - The generalized Poisson equation
- **5** Cosmology of the model
- 6 Conclusions
- References

The Einstein-Hilbert action

$$S = \frac{1}{16\pi G} \int d^4x \sqrt{-g} \left(R - 2\Lambda \right) + \mathcal{S}_m,$$

The field equations

$$G_{\mu\nu} + g_{\mu\nu}\Lambda = 8\pi G T_{\mu\nu}.$$

Identically we have

$$\nabla^{\mu}G_{\mu\nu} = 0 \quad \Rightarrow \quad \nabla^{\mu}T_{\mu\nu} = 0$$

Modified Gravity Theories:

- Higher dimensional gravity. RS 1999, DGP 2000, STM 1999, Loveloke 1971, ...
- Higher derivative gravity f(R), f(R,T), f(G), ...
- Non-Riemannian geometry Weyl 1918, Cartan 1922, ...
- Tensor & ... gravity Brans-Dicke 1961, TeVeS 2004, STVG 2006, ...
- ...

Lovelock Lagrangian

- Metric theory of gravity in D dimensional space-time.
- Results in second order equation of motion.
- The field equations is conserved.

$$\mathcal{L} = \sqrt{-g} \sum_{n=0}^{t} \alpha_n \, \mathcal{R}^n,$$

where

$$\mathcal{R}^{n} = \frac{1}{2^{n}} \delta^{\mu_{1}\nu_{1}\dots\mu_{n}\nu_{n}}_{\alpha_{1}\beta_{1}\dots\alpha_{n}\beta_{n}} \prod_{r=1}^{n} R^{\alpha_{r}\beta_{r}}_{\mu_{r}\nu_{r}}, \quad \delta^{\mu_{1}\nu_{1}\dots\mu_{n}\nu_{n}}_{\alpha_{1}\beta_{1}\dots\alpha_{n}\beta_{n}} = \frac{1}{n!} \delta^{\mu_{1}}_{[\alpha_{1}}\delta^{\nu_{1}}_{\beta_{1}}\cdots\delta^{\mu_{n}}_{\alpha_{n}}\delta^{\nu_{n}}_{\beta_{n}]}.$$

$$\mathcal{L} = \sqrt{-g} \left(\alpha_0 + \alpha_1 R + \alpha_2 \left(R_{\alpha\beta\mu\nu} R^{\alpha\beta\mu\nu} - 4R_{\mu\nu} R^{\mu\nu} + R^2 \right) + \ldots \right),$$

Brans-Dicke Theory

- Respects to the Mach Principle.
- The gravitational interaction is mediated by a scalar field as well as the tensor field of general relativity.
- The gravitational constant G is not presumed to be constant.

$$S = \frac{1}{16\pi} \int d^4x \sqrt{-g} \left(\frac{\phi}{\phi} R - \omega \frac{\partial_{\mu} \phi \partial^{\mu} \phi}{\phi} \right) + \mathcal{S}_m.$$

• The field equations

$$\Box \phi = \frac{8\pi}{3 + 2\omega} T,$$

$$G_{\mu\nu} = \frac{8\pi}{\phi} T_{\mu\nu} + \frac{\omega}{\phi^2} (\partial_{\mu}\phi \partial_{\nu}\phi - \frac{1}{2} g_{\mu\nu} \partial_{\rho}\phi \partial^{\rho}\phi) + \frac{1}{\phi} (\nabla_{\mu} \nabla_{\nu}\phi - g_{\mu\nu} \Box \phi).$$

• For $T \neq 0$, in the limit $\omega \to \infty$, BD theory tends to GR.

Higher derivative gravity

- Frist attemp in this way was done by Weyl to unify gravity and electromagnetic forces.
- In the low-energy regime, adding higher order derivative terms and non-minimal couplings between matter and gravity can lead to a renormalizable theory at the one-loop level.
- Self-consistent inflationary model.
- To explain dark energy and dark matter without exotic matter and energy.
- There is no *a priori* reason to restrict the gravitational action to be the Einstein-Hilbert action with minimal coupling.

f(R) gravity:

• The action

$$S = \frac{1}{16\pi G} \int d^4x \sqrt{-g} f(R) + \mathcal{S}_m.$$

• The field equations

$$f'(R)R_{\mu\nu} - \frac{1}{2}f(R)g_{\mu\nu} + [g_{\mu\nu}\Box - \nabla_{\mu}\nabla_{\nu}]f'(R) = 8\pi G T_{\mu\nu},$$

• Rewritten the field equations

$$G_{\mu\nu} = 8\pi G_{eff} T_{\mu\nu} + T_{\mu\nu}^{curv}$$

$$G_{eff} = \frac{G}{f'}, \qquad T_{\mu\nu}^{curv} = \frac{1}{2}g_{\mu\nu}(\frac{f}{f'} - R) - \frac{1}{f'}(g_{\mu\nu}\Box - \nabla_{\mu}\nabla_{\nu})f'$$

- There is a correspondence between f(R) gravity and Brans-Dicke theory.
- This correspondence shows that there is a non-minimal coupling between matter and geometry.
- We add a non-minimal coupling between matter and geometry by hand.
- What conditions one should impose?

Non-minimal coupling

- In the full Lagrangian, the matter fields should couple to curvature minimally: The principle of minimal coupling.
- One can generalize the above statement to obtain a weaker principle: In the matter Lagrangian, matter fields should not couple to the curvature.
- The first attempt to couple matter and geometry in a non-minimal way was carried out by H. Goenner [1].

Non-minimal coupling

- In the full Lagrangian, the matter fields should couple to curvature minimally: The principle of minimal coupling.
- One can generalize the above statement to obtain a weaker principle: In the matter Lagrangian, matter fields should not couple to the curvature.
- The first attempt to couple matter and geometry in a non-minimal way was carried out by H. Goenner [1].

His postulates are:

- The field equation should follow from the variational principle.
- Vacuum solutions of the theory should be identical to GR vacuum solutions.
- The Newtonian limit should hold.
- Form of the non-minimal couplings should be independent of the specific material of the universe.

Non-minimal coupling

- In the full Lagrangian, the matter fields should couple to curvature minimally: The principle of minimal coupling.
- One can generalize the above statement to obtain a weaker principle: In the matter Lagrangian, matter fields should not couple to the curvature.
- The first attempt to couple matter and geometry in a non-minimal way was carried out by H. Goenner [1].

He had suggested the Lagrangian:

$$\mathcal{L} = \sqrt{-g} \left[\frac{1}{16\pi G} R + (1 + \phi(R^{\alpha}_{\beta\rho\sigma})) L_m \right],$$

and considered the case $\phi(R^{\alpha}_{\beta\rho\sigma}) = \alpha R$.

• One can generalize the above Lagrangian [2] to

$$\mathcal{L} = \sqrt{-g} f(R, L_m).$$

- But why L_m ? We can equivalently couple the curvature directly to the energy-momentum tensor $T_{\mu\nu}$ of the matter!
- The first attempt was done by Paplawski [3] with the Lagrangian

$$\mathcal{L} = \sqrt{-g} \big[R + \Lambda(T) \big] + \mathcal{L}_m.$$

• One can couple the Ricci scalar to the trace of energy-momentum tensor in a more general way:

$$\mathcal{L} = \sqrt{-g}f(R,T) + \mathcal{L}_m.$$

The action

• The action for our model is

$$S = \frac{1}{16\pi G} \int d^4x \sqrt{-g} f\left(R, T, \mathbf{R}_{\mu\nu} \mathbf{T}^{\mu\nu}\right) + \int d^4x \sqrt{-g} L_m,$$

• $T_{\mu\nu}$ is the energy-momentum tensor of ordinary matter,

$$T_{\mu\nu} = -\frac{2}{\sqrt{-g}} \frac{\delta \left(\sqrt{-g} L_m\right)}{\delta g^{\mu\nu}}.$$

• T is the trace of $T_{\mu\nu}$!

Field equations

• The field equations can then be obtained as

$$(f_R - f_{RT}L_m)G_{\mu\nu}$$

$$+ \left[\Box f_R + \frac{1}{2}Rf_R - \frac{1}{2}f + f_TL_m + \frac{1}{2}\nabla_{\alpha}\nabla_{\beta}\left(f_{RT}T^{\alpha\beta}\right) \right] g_{\mu\nu}$$

$$- \nabla_{\mu}\nabla_{\nu}f_R + \frac{1}{2}\Box\left(f_{RT}T_{\mu\nu}\right) + 2f_{RT}R_{\alpha(\mu}T_{\nu)}^{\ \alpha} - \nabla_{\alpha}\nabla_{(\mu}\left[T^{\alpha}_{\ \nu)}f_{RT}\right]$$

$$- \left(f_T + \frac{1}{2}f_{RT}R + 8\pi G\right)T_{\mu\nu} - 2\left(f_Tg^{\alpha\beta} + f_{RT}R^{\alpha\beta}\right)\frac{\partial^2 L_m}{\partial g^{\mu\nu}\partial g^{\alpha\beta}} = 0.$$

• The last term is zero for a perfect fluid and scalar field.

This term is non-zero for the electromagnetic field

$$\frac{\partial^2 L_m}{\partial g^{\mu\nu} \partial g^{\alpha\beta}} = -\frac{1}{2} F_{\mu\alpha} F_{\nu\beta}.$$

• One can rewrite the field equation as

$$G_{\mu\nu} = 8\pi G_{eff} T_{\mu\nu} - \Lambda_{eff} g_{\mu\nu} + T_{\mu\nu}^{eff},$$

with

$$\begin{split} & G_{eff} = \frac{G + \frac{1}{8\pi} \left(f_T + \frac{1}{2} f_{RT} R - \frac{1}{2} \Box f_{RT} \right)}{f_R - f_{RT} L_m}, \\ & \Lambda_{eff} = \frac{2\Box f_R + R f_R - f + 2 f_T L_m + \nabla_\alpha \nabla_\beta (f_{RT} T^{\alpha\beta})}{2 (f_R - f_{RT} L_m)}, \end{split}$$

and

$$\begin{split} T_{\mu\nu}^{eff} &= \frac{1}{f_R - f_{RT} L_m} \Bigg\{ \nabla_{\mu} \nabla_{\nu} f_R - \nabla_{\alpha} f_{RT} \nabla^{\alpha} T_{\mu\nu} \\ &- \frac{1}{2} f_{RT} \Box T_{\mu\nu} - 2 f_{RT} R_{\alpha(\mu} T_{\nu)}^{\ \alpha} + \nabla_{\alpha} \nabla_{(\mu} \left[T_{\ \nu)}^{\alpha} f_{RT} \right] \\ &+ 2 \left(f_T g^{\alpha\beta} + f_{RT} R^{\alpha\beta} \right) \frac{\partial^2 L_m}{\partial g^{\mu\nu} \partial g^{\alpha\beta}} \Bigg\}. \end{split}$$

What happens to a massive test particle?

• Using the expression for $\nabla_{\mu}T^{\mu\nu}$ the geodesic equation in this model can be written as

$$\frac{d^2x^{\lambda}}{ds^2} + \Gamma^{\lambda}_{\ \mu\nu}u^{\mu}u^{\nu} = f^{\lambda},$$

with

$$f^{\lambda} = \frac{1}{\rho + p} \left[(f_T + Rf_{RT}) \nabla_{\nu} \rho - (1 + 3f_T) \nabla_{\nu} p - (\rho + p) f_{RT} R^{\sigma \rho} (\nabla_{\nu} h_{\sigma \rho} - 2 \nabla_{\rho} h_{\sigma \nu}) - f_{RT} R_{\sigma \rho} h^{\sigma \rho} \nabla_{\nu} (\rho + p) \right] \frac{h^{\lambda \nu}}{1 + 2f_T + Rf_{RT}}.$$

- There is an extra force on a test particle in this theory.
- So, the violation of strong equivalence principle!

An extra acceleration?

 The role of extra acceleration can be obtained by considering the action

$$S_p = \int L_p \ ds = -\int \sqrt{Q} \sqrt{-g_{\mu\nu} u^{\mu} u^{\nu}} \ ds,$$

with

$$f^{\lambda} = (g^{\nu\lambda} + u^{\nu}u^{\lambda})\nabla_{\nu} \ln \sqrt{Q},$$

• In the present model we have

$$f^{\lambda} = \frac{F}{\rho} h^{\lambda \nu} \nabla_{\nu} \rho,$$

where

$$F = \frac{f_T + f_{RT}(R - R_{\alpha\beta}h^{\alpha\beta})}{1 + 2f_T + Rf_{RT}}.$$

• \sqrt{Q} can be expanded around the background energy-density ρ_0

$$\sqrt{Q} \approx 1 - F_0 + \frac{F_0}{\rho_0} \rho,$$

with $F_0 \equiv F(\rho_0)$.

• One can obtain the extra acceleration as

$$\vec{a} = -\vec{\nabla}\phi - \vec{\nabla}U(\rho) = \vec{a}_N + \vec{a}_E,$$

• The extra acceleration is

$$\vec{a}_E(\rho) = -\vec{\nabla}U(\rho) = \frac{F_0}{\rho_0}\vec{\nabla}\rho.$$

• The extra acceleration depends on the gradient of the matter energy-density.

The generalized Poisson equation

- Suppose that the Universe is filled by a non-relativistic matter i.e. $p \ll \rho$.
- The weak field expansion of the theory can be obtain by setting $g_{00} = -(1+2\phi)$ and then $R = -2R_{00} = -2\nabla^2\phi$.
- \bullet ϕ is the Newtonian potential.

• The generalized Poisson equation is

$$\nabla^2 \phi = \frac{1}{2(f_R - 2\rho f_{RT})} \left[8\pi G \rho + 3\nabla^2 f_R - 3\rho f_T - 2f + \nabla (3f_R + \rho f_{RT}) \cdot \nabla \phi \right].$$

An example: $f = R + \alpha R_{\mu\nu} T^{\mu\nu}$

• The flat FRW line element:

$$ds^{2} = -dt^{2} + a^{2}(t)(dx^{2} + dy^{2} + dz^{2})$$

• Hubble parameter:

$$H = \frac{\dot{a}}{a}$$

• The field equations with perfect fluid as the matter content of the universe are

$$3H^{2} = \frac{\kappa}{1 - \alpha \rho} \rho + \frac{3}{2} \frac{\alpha}{1 - \alpha \rho} H(\dot{\rho} - \dot{p}),$$

and

$$2\dot{H} + 3H^2 = \frac{2\alpha}{1 + \alpha p}H\dot{\rho} - \frac{\kappa p}{1 + \alpha p} + \frac{1}{2}\frac{\alpha}{1 + \alpha p}(\ddot{\rho} - \ddot{p}).$$

• For dust with the equation of state p = 0 and by assuming $\alpha \rho \ll 1$, de Sitter solution $H = H_0 = \text{constant exists}$ with

$$\rho(t) = e^{\frac{1}{2}H_0(t-t_0)} \left\{ \frac{\sqrt{\alpha} (2\rho_{01} - H_0\rho_0)}{\sqrt{\alpha H_0^2 - 8\kappa}} \sinh \left[\frac{\sqrt{\alpha H_0^2 - 8\kappa}}{2\sqrt{\alpha}} (t - t_0) \right] + \rho_0 \cosh \left[\frac{\sqrt{\alpha H_0^2 - 8\kappa}}{2\sqrt{\alpha}} (t - t_0) \right] \right\},$$

where we have used the initial conditions $\rho(t_0) = \rho_0$, and $\dot{\rho}(t_0) = \rho_{01}$.

• In this case, weak energy condition holds for $\alpha > 0$ [5].

Conclusions

- Non-minimal coupling between matter and geometry seems to be a viable generalization of f(R) theories.
- One can couple the geometry to the matter Lagrangian or to the energy-momentum tensor.
- In f(R,T) theories, the interaction between geometry and electromagnetic field is not considered. The addition of $R_{\mu\nu}T^{\mu\nu}$ coupling can solve this problem.
- This model can also explain the late time acceleration of the Universe.
- The extra force could explain the properties of the galactic rotation curves without resorting to the dark matter hypothesis.

References

H. Goenner, Found. Phys. 14, 865 (1984).

T. Harko and F. S. N. Lobo, Eur. Phys. J. C 70, 373 (2010).

N. Paplawski, arXiv:gr-qc/0608031 (2006).

Z. Haghani, T. Harko, F. Lobo, H. R. Sepangi and S.Shahidi, Phys. Rev. D 88, 044023 (2013).

M. Sharif, M. Zubiar, JHEP 1312 079 (2013).